Теорія ймовірності — розділ математики, що вивчає закономірності випадкових явищ: випадкові події, випадкові величини, їхні функції, властивості й операції над ними.
Теорія ймовірностей виникла і спершу розвивалася як прикладна дисципліна (зокрема, для розрахунків в азартних іграх). Пов’язана з іменами Х.Гюйґенса, Б.Паскаля, П.Ферма. Своїм теоретичним обґрунтуванням зобов’язана Я.Бернуллі, П.Лапласу, П.Л.Чебишову, А.М.Ляпунову
Теорія ймовірностей


Для ознайомлення з основними поняттями перегляньте презентацію
Розглянь приклади розв'язування задач
1. У скрині лежать 20 кульок, із яких 12 білих, решта чорні. Виймають навмання 2 кульки. Яка ймовірність того, що вони будуть білі?
Розв’язання
Загальна кількість елементарних подій випробування (вийнято 2 кульки) дорівнює числу способів, якими можна вийняти 2 кульки із 20, тобто числу комбінацій із 20 елементів по 2 ( ). Обчислимо кількість елементарних подій, які сприяють події «вийнято 2 білих кульки». Ця кількість дорівнює числу способів, якими можна вийняти 2 кульки із 12 білих, тобто числу комбінацій із 12 елементів по 2 ( ).
Отже, якщо подія А – «вийнято 2 білі кульки», то
Відповідь: 33/95.
2. На картках записані натуральні числа: від 1 до 15. Навмання вибирають дві з них. Яка ймовірність того, що сума чисел, записаних на цих картках дорівнює 10?
Розв’язання. Кількість всіх можливих випадків — це кількість способів, якими можна (без врахування порядку) вибрати дві картки з п’ятнадцяти. Отже, n = С15 = 105. Нас влаштовують такі набори (1;9), (2;8), (3;7), (4;6). Отже,
Відповідь:4/105.



